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2 Laboratoire Aimé Cotton, CNRS, bâtiment 505, Campus d’Orsay, 91405 Orsay Cedex, France

Received 19 April 2002
Published online 1st October 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. The paper contains a time-dependent investigation of the tunneling effect observed in the pho-
toassociation spectrum of Cs2 and attributed to the 0−

g (6s, 6p3/2) double well. When by photoassociation of
two cold cesium atoms a vibrational level of the outer well is populated, tunneling is an efficient mechanism
for transferring the population to the inner well (R < 15a0), where spontaneous emission may lead to for-
mation of cold molecules in low vibrational levels of the a3Σ+

u (6s, 6s) electronic state. This tunneling effect
is analyzed by wavepackets propagation, first considering the double well potential alone, and following a
packet made by a superposition of states initially located at large distances. Characteristic times for the
vibration dynamics, corresponding to a beating phenomenon between the two wells, to partial “revival”
at large distances, and to maxima in the population localized in the inner well are reported and discussed.
Second, we simulate the two-channels a3Σ+

u (6s, 6s) → 0−
g (6s, 6p3/2) photoassociation at detunings around

2.9 cm−1: the inner well can be populated either by the excitation of a vibrational level of the external
well (resonant excitation), or by tuning the photoassociation laser at the energy of the inner well level
which displays tunneling (“off-resonance excitation”). In the first case the photoassociation is efficient,
while the tunneling probability is small; in the second, the tunneling probability is large, so that despite
the poor efficiency of the photoassociation process, more population can be transferred to the inner well.
This second choice is shown to be very sensitive to the laser intensity, which could be used to control the
population of the inner well and hence the formation of ultracold molecules in low vibrational levels.

PACS. 03.65.Xp Tunneling, traversal time, quantum Zeno dynamics – 31.15.Qg Molecular dynamics and
other numerical methods – 33.80.Ps Optical cooling of molecules; trapping – 33.80.Gj Diffuse spectra;
predissociation, photodissociation – 34.30.+h Intramolecular energy transfer; intramolecular dynamics;
dynamics of van der Waals molecules

1 Introduction

Formation of ultracold molecules, at temperatures be-
low 10−3 K, has received much attention lately due to
the demonstration of efficient schemes in samples of cold
Cs [1,2], K [3] and Rb [4] atoms. Most schemes rely
upon the photoassociation reaction [5], where a molecule
is formed in an excited electronic state from a pair of
colliding atoms which absorb a photon. The photoasso-
ciated molecule decays by spontaneous emission, most of-
ten giving back a pair of ground-state atoms and in some
particular situations a stable molecule in the ground (or
lowest triplet) electronic state. Efficient schemes require a
favourable branching ratio between the stabilization and
dissociation channels: the search is difficult since the pho-
toassociation reaction preferentially takes place at large
internuclear distances (see Fig. 1), forming long range
molecules where the two atoms are most of the time very

a e-mail: francoise.masnou@lac.u-psud.fr

far apart, so that the decay probability to bound levels in
the shorter-range ground-state potential is negligible. In
the Cs2 case, it is the presence of double-well structures
in the excited 1u(6s + 6p3/2) and 0−g (6s + 6p3/2) poten-
tial curves which provides good Franck-Condon factors for
population of vibrational levels v” of the X1Σ+

g and a3Σ+
u

electronic states respectively. Generally, the decay step is
populating excited vibrational levels v”, so that the stable
molecule, although “translationally cold”, is still “vibra-
tionally hot”.

However, formation of ultracold molecules in low vi-
brational levels v” has also been achieved owing to an
unexpected tunneling mechanism. Indeed, in a previous
paper [6], we have analyzed two features with larger ro-
tational structures, present in the Cs2 photoassociation
spectrum [7], and reported calculations assigning them to
levels of the inner well of the 0−g (6s, 6p3/2) potential pop-
ulated via photoassociation into levels of the outer well
and tunneling through the barrier. The scheme is recalled
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Fig. 1. Electronic potentials involved in the a3Σ+
u −→

0−
g (6s, 6p3/2) photoassociation of Cs2 (the 0−

g (6s, 5d) potential
which influences the tunneling is also represented with dotted
line). The photoassociation reaction is taking place at large dis-
tances (1), populating a vibrational level of the outer well. By
spontaneous emission, the photoassociated molecule can decay
back into a pair of cold atoms (2) or be stabilized in a bound
level v” of the lower triplet state (3). After tunneling, a level
of the inner well is populated, which has good Franck-Condon
overlap with the low v” levels (4).

in Figure 1. The tunneling effect, unusual for a heavy
molecule like Cs2, is an efficient mechanism to transfer the
population from large distances (still two atoms) to the in-
ner zone, where spontaneous emission can reach very low
vibrational levels of the a3Σ+

u state, creating molecules
that are also vibrationally cold (as we indicate by (4) in
Fig. 1).

In the present work, our aim is to explore further this
tunneling mechanism, now using time-dependent calcula-
tions, related to a previous work on the dynamics of the
photoassociation reaction [8] in the case of a single-well
excited potential. The latter paper showed competition
between two characteristic times related to vibration in
the potential well and Rabi coupling due to the cw-laser.
At small detunings, when vibrational levels close to the
dissociation limit are populated, the vibration period can
become larger than the Rabi period, creating “strong field
situations” where the dynamics can be controlled by the
intensity of the laser. We shall answer questions such as:

– Can we associate a characteristic time to tunneling in
the photoassociation conditions?

– What is the mechanism to transfer population to vi-
brational levels of the inner well (R < 14a0) through
a photoassociation reaction taking place at large dis-
tances (R ≥ 70a0)?

– Which proportion of the population in the
0−g (6s, 6p3/2) excited potential can be localized
in the inner well at a given time t?

– Is the tunneling effect depending upon the intensity of
the photoassociation laser or, in other words, can we
control tunneling by varying the intensity?

Some remarks have to be made relative to the first
question which refers directly to the very debated concept
of tunneling time. The variety of approaches around this
notion shows that it is considered as meaningful, despite
the fact that “this is a field with a diversity of viewpoints,
without a clear consensus”, as stated in reference [9],
which reviews three categories of approaches used to de-
fine a time scale associated with the duration of the tun-
neling process: (i) by following wave packets incident on
the barrier, (ii) by determination of a set of dynamic paths
x(t) (found through the Feynman path-integral formula-
tion, through the Bohm approach, or through the Wigner
distribution) used to ask how long each path spends in
the barrier and which is averaged in some way, (iii) by
defining a physical clock used to measure the time elapsed
during tunneling. Very recently, another paper [10] pro-
posed a definition of tunneling time through a barrier by
using the local value of a “time” operator. The authors
emphasize that “a universal intrinsic tunneling time that
is valid for all experiments probably does not exist. There
are most likely a multiplicity of tunneling times in nature,
each one describing a different type of experiment”. This
meets an older remark about the fact that “different ex-
pressions for the tunneling time could be relevant under
different circumstances” [11]. The approach using wave
packets to study tunneling was very probably the context
which introduced the question about a tunneling time.
In references [9,11,12] can be found definitions of differ-
ent tunneling times from the deformation of an incident
wave packet, as well as discussions of their problematic
points and references about this subject. As far as the
present work is concerned, the main aim is to modelize
time-dependent photoassociation experiments, so that we
shall not focus on the definition of a “tunneling time”, but
rather take a pragmatic approach analyzing the results of
wavepacket-propagation calculations and searching for a
possible characteristic time related to tunneling.

A wavepacket analysis of tunneling obviously gives re-
sults depending upon the choice of the initial wavepacket.
As we treat a tunneling effect manifested in the photoas-
sociation of two cold atoms at well-defined resonance en-
ergies, we can have an “unambiguous choice” of the initial
energy of the wavepacket and of its localization at the in-
teratomic distance where the photoassociation process is
taking place. This will be discussed below in Section 4.

The paper is organized as follows: in Section 2 we sum-
marize our previous analysis of the 0−g (6s, 6p3/2) photoas-
sociation spectrum showing the existence of a tunneling
effect, and discussing the influence of coupling with an-
other channel, 0−g (6s, 5d), in the region of the inner well.
For clarity sake, we propose in the present work a simpli-
fied model where the coupling with this other channel is
neglected. In Section 3, we estimate the various character-
istic times useful to interpret time-dependent calculations.
In Section 4 we report a time-dependent analysis of the
tunneling effect in the Cs2 0−g (6s, 6p3/2) double well using
wavepacket propagation. Section 5 contains the analysis
of tunneling effect in the a3Σ+

u → 0−g (6s, 6p3/2) photoas-
sociation reaction, when a level of the 0−g (6s, 6p3/2) inner
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well can be populated. Section 6 is the conclusion. In a
forthcoming paper we shall complete the present work by
more sophisticated calculations introducing the coupling
with the 0−g (6s, 5d) channel and estimating the rate of
formation of stable molecules by spontaneous emission, in
order to give conclusions directly relevant to experiment.

2 Tunneling in the Cs2 0�g (6s, 6p3�2)
photoassociation spectrum: observed
spectrum and simplified model

The first observation of ultra-cold long-lived Cs2
molecules [1] relies upon the three following steps, also
indicated in Figure 1. The molecules are formed by
photoassociation in the 0−g (6s + 6p3/2) excited state:

Cs(6s2S1/2, F = 4)+ Cs(6s2S1/2, F = 4)+ �(ω0 −∆L) →
Cs2(0−g (6s2S1/2 + 6p2P3/2; v, J)) (1)

using a laser red-detuned by ∆L relative to the D2

resonance line. Spontaneous emission either gives back a
pair of ground state atoms:

Cs2(0−g (6s2S1/2 + 6p2P3/2; v, J)) →
Cs(6s2S1/2) + Cs(6s2S1/2) + hν2, (2)

or leads to the formation of long-lived molecules in the
a3Σ+

u state:

Cs2(0−g (6s2S1/2 + 6p2P3/2; v, J) →
Cs2(3Σ+

u (6s2S1/2 + 6s2S1/2; v”, J”)) + hν3. (3)

The ground-triplet-state molecules are detected by a res-
onant two-step photoionisation process, and time-of-flight
analysis of the Cs+2 ions [1,6,7]. The 0−g potential curve
displays a double well structure with a hump located
around 15a0, as indicated in Figure 1 where we have repre-
sented potential curves computed by Spies and Meyer [13],
matched at large distances to the asymptotic expansion
of Marinescu and Dalgarno [14]. In the photoassociation
spectrum, vibrational levels from vext = 0 to vext = 132
are identified [7], corresponding to vibrational motion in
the external well of the 0−g (6s2S1/2 + 6p2P3/2) potential.
Also present in the experimental spectrum are two struc-
tures (denominated G1 and G2), corresponding to bind-
ing energies −2.14 cm−1 and −6.15 cm−1, which are not
part of the regular series vext, and which have a well-
resolved rotational structure (in contrast with their neigh-
bouring lines identified as levels of the outer well). Their
larger rotational constants, B1

v = 4.5 × 10−3 cm−1 and
B2

v = 8.1 × 10−3 cm−1, are typical of vibrational mo-
tion in the region of the inner well. From the definition of
the rotational constant as Bv = 〈χv|�2/2µR2|χv〉, where
χv(R) is the vibrational wavefunction, µ = 121135.83 au
the reduced mass for Cs2, and R the internuclear distance,
it is possible to estimate a mean value of the inverse inter-
nuclear distance, yielding 〈R〉1 ≈ 14a0 and 〈R〉2 ≈ 11a0,
whereas the hump in the double-well potential is located
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Fig. 2. Rotational constants and energies, for vibrational lev-
els of the 0−

g (6s, 6p3/2) and 0−
g (6s, 5d) potentials, computed in

reference [6] for J = 0. (a) Two coupled channel calculations:
the two structures G1 and G2 correspond to vibrational levels
bound by −2.15 and −6.22 cm−1, with large rotational con-
stants B1

v = 4.64 × 10−3 cm−1 and B2
v = 8.06 × 10−3 cm−1,

respectively. In contrast, the levels of the outer well are charac-
terized by small rotational constants. Such calculations agree
with experimental results. (b) Two uncoupled channels: vibra-
tional levels of the 0−

g (6s, 6p3/2) double well are shown with
filled cercles. The G1 structure is shifted at −2.9 cm−1, giving
the G0 structure corresponding to tunneling in the double well
potential. The G2 structure has disappeared, while a deeper
vibrational level of the 0−

g (6s, 5d) potential is indicated by a
star.

at ≈ 15a0. The observed spectrum and the rotational con-
stants have been simulated by numerical calculations.

In reference [6] we have proposed an analysis of these
two structures relying on numerical calculation of ener-
gies and rotational constants of the 0−g (6s, 6p3/2) vibra-
tional levels using the mapped Fourier grid method [15].
The existence of two structures G1 and G2, reported in
Figure 2a, is explained both by the tunneling effect and
by the coupling in the inner region with the potential
0−g (6s, 5d) (hereafter referred to as Vd). More precisely,
we have compared calculations involving the coupling with
the Vd channel with calculations neglecting it. We then can
identify the structure G1 to a vibrational level in the inner
well of the 0−g (6s, 6p3/2) potential (G0 in Fig. 2b), shifted
by the coupling with Vd channel, and the structure G2 to a
vibrational level in the Vd potential (indicated by a star in
the same figure), shifted by the coupling with the double
well potential. Slight modifications of the existing poten-
tials within the expected accuracy of ab initio calculations
lead to a theoretical spectrum in quantitative agreement
with experiment, with two structures G1 and G2 having
correct binding energies and rotational constants. In con-
trast, a one-channel model, taking into account only the
double well 0−g (6s, 6p3/2) potential, yields a unique struc-
ture in the energy domain of the observed spectrum, la-
beled G0 in Figure 2b. For qualitative interpretation of
the tunneling effect such a model is sufficient, as the po-
sition of G0 is very close (0.06 cm−1) to the observed G1
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Table 1. Energies Ev, rotational constants Bv and vibrational periods for the vibrational levels of the double well having
energies around –3 cm−1. v0 is the level of the inner well, the other levels are located in the external well.

Level Ev(cm
−1) Bv(10−3cm−1) R̂ = (2µBv)−1/2(a0) T ext

vib (ps) T int
vib(ps)

external (v0 − 3) –3.280 0.36 50.16 218

external (v0 − 2) –3.127 0.39 48.19 233

Ext. + tunneling (v0 − 1) –2.984 0.83 33.04 210

Int. + tunneling (v0) –2.904 4.5 14.19 3.5

Ext. + tunneling (v0 + 1) –2.825 0.81 33.44 252

external (v0 + 2) –2.693 0.38 48.82 254

structure. We shall therefore develop in the present paper
a simplified model neglecting the weak coupling with the
inner 0−g (6s, 5d) (Vd) potential.

Considering only the 0−g (6s, 6p3/2) double well (see
Fig. 3) we shall study the tunneling effect both in the G0

structure, for the value J = 0 of the rotational number,
and also in two neighbouring vibrational levels. Indeed,
from reference [6], we note that the tunneling effect
can be identified from the values of the rotational con-
stant Bv. In the results of time-independent calculations,
reported in Figure 2 and in Table 1, the vibrational
levels in the external well are characterized by rotational
constants Bex

v ≈ 0.4 × 10−3 cm−1, there is a level
hereafter referred to as v0 with B0

v = 4.5 × 10−3 cm−1,
corresponding to a wavefunction mainly localized in
the inner well, and two neighbouring levels labeled here
v0 − 1 and v0 + 1, with wavefunctions mainly localized
in the outer well, but with some probability in the inner
well manifested by rotational constants (denoted here
as Be−t

v ≈ 2Bex
v ≈ 0.8 × 10−3 cm−1) slightly larger

than the other vext levels, purely located in the outer
well. In the present work, we use a time-dependent
approach, assuming that some excitation mechanism (like
in the photoassociation process) has created an initial
wavepacket at large distances with an energy ∼ −3 cm−1

relative to the (6s, 6p3/2) dissociation limit, close to the
binding energy of the G0 structure, and we follow the
time evolution to probe the tunneling dynamics. Two
situations are considered:
– first, in Section 4, we treat the one-channel prob-

lem of tunneling in the 0−g (6s, 6p3/2) double well, by
propagating a Gaussian wavepacket of initial energy
≈ −3 cm−1, which is a superposition of several vi-
brational levels surrounding v0, from large distances
(about 90a0) to the inner well;

– second, in Section 5, we study the tunneling mecha-
nism in the photoassociation conditions, when a single
vibrational level of the double well is populated, and
the 0−g (6s, 6p3/2) state is coupled to the continuum of
a3Σ+

u (6s + 6s) by a cw laser. Various detunings are
considered, corresponding to resonance either with
the v0 level of the inner well, or with a neighbouring
level like v0 − 1.
In both cases, the kinetic energies of the initial Gaus-

sian packets (representing the relative movement of two
cesium atoms) are small, in relation with the very low
temperatures of the cold collisions.
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Fig. 3. 0−
g (6s, 6p3/2) double well potential. The three last lev-

els in the inner well are indicated in the figure. Tunneling
through the barrier is possible for the last vibrational level
of the inner well, v0, and the neighbouring levels v0 − 1, v0 +1
of the outer well.

3 Characteristic times associated
with the dynamics of a pair of cold atoms
interacting with laser light

In a previous work on the dynamics of photoassociation [8]
in a single-well potential, we remarked that comparing the
values of the classical vibrational period in the excited
state and Rabi-coupling period gave useful indications for
the interpretation of the calculations. The characteristic
time Tvib is related to the energy difference between two
neighbouring vibrational levels of the potential:

Tvib(Ev) =
2π�

Ev+1 − Ev
(4)

and is close to the classical vibrational period. Considering
the problem of the vibrational dynamics in the double-well
0−g (6s, 6p3/2) potential, in the absence of laser coupling,
several characteristic times are expected. Since some vi-
brational levels can be assigned to the outer well (ve) and
others to the inner well (v0), we can define two charac-
teristic “vibrational periods”: one for the levels belong-
ing to the external well, T ext

vib , and the other for levels of
the inner well, T int

vib. Besides, as already discussed above
and recalled above in Table 1, two levels of the external
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well have a tunneling wavefunction, so that the level spac-
ing is modified. As reported in the table, the character-
istic time T ext

vib is in the range 200–250 ps for vibrational
levels lying between –3.3 and –2.7 cm−1 in the external
well, verifying the expected scaling law for a R−3 poten-
tial Tvib(Eext

v ) ∼ E
−5/6
v [8]. The two levels (v0 + 1) and

(v0 − 1) have a modified characteristic time. In the inner
well, due to a larger level spacing around 9.5 cm−1, the
vibration period is much smaller: we find T int

vib = 3.5 ps.
Moreover, as we show in our calculations presented in Sec-
tions 4 and 5, the possibility of tunneling between the two
wells around v0 reveals that a “beating time” between the
two wells, defined as:

T int,ext =
2π�

E(v0) − E(v0 − 1)
≈ 2π�

E(v0 + 1) − E(v0)
(5)

has significance. The value of this third characteristic time
is T int,ext = 420 ps.

When the photoassociation laser is tuned, we have to
solve a two-channels problem in which the electronic po-
tentials a3Σ+

u (6s, 6s) (ground state g) and 0−g (6s, 6p3/2)
(excited state e) are coupled by the light field with fre-
quency ω/2π, ω = ω0 − ∆L. At resonance, the cw-laser
is red-detuned by �∆L ∼ 3 cm−1 from the energy �ω0 of
the atomic transition 6s → 6p3/2. The time-dependent
Schrödinger equation for the two coupled channels is
written:

ĤΨ(t) = (Ĥmol + Ŵ(t))Ψ(t) = i�
∂

∂t
Ψ(t). (6)

The molecular Hamiltonian Ĥmol = T̂ + V̂el is the sum
of the kinetic energy operator T̂ and electronic potential
energy operator V̂el, and the coupling term is written in
the dipole approximation:

Ŵ(t) = −D(ri) · eLE0 cos(ωLt), (7)

involving the transition dipole moment of the dimer D(ri)
and the electric field E = E0 cos(ωLt) = eLE0 cos(ωLt),
with amplitude E0, polarisation eL, and frequency ωL/2π.

The explicit temporal dependence of the Hamiltonian
Ĥ is eliminated in the framework of the rotating wave
approximation, which allows to write the radial coupled
equations as:

i�
∂

∂t

(
ΨΣ(R, t)

Ψ0−
g
(R, t)

)
=


 T̂ + V̂′

Σ(R) �Ω

�Ω T̂ + V̂′
0−

g
(R)


( ΨΣ(R, t)

Ψ0−
g
(R, t)

)
(8)

where the potentials are now crossing and referred to
�∆L = 0 origin:

V̂′
Σ(R) = V̂Σ(R) − �∆L, V̂′

0−
g
(R) = V̂0−

g
(R) − �ω0.

(9)

The period TRabi of the “Rabi oscillations” is associated
with the coupling �Ω induced by the laser between the
two states:

TRabi =
π

Ω
· (10)

Being related to the molecular transition dipole moment
Dge(R) between the ground and excited electronic states,
the coupling term is R-dependent (�Ω(R) = −Dge(R) ·
E0/2). Since the photoassociation reaction occurs at large
distances, we can use the asymptotic value of the dipole
moment Dge(R) · eL ≈ DeL

ge deduced from standard
long-range calculations [16]. For this reason, the formu-
lae (8, 10) are written for a constant coupling:

�Ω = −1
2

√
2I

cε0
DeL

ge (11)

where I is the laser intensity. Depending upon the laser
intensity and the detuning, we can have different ratios
of these characteristic times and, from the discussion in
reference [8], we should expect three possible regimes:
T ext

vib � TRabi “strong coupling”, T ext
vib � TRabi “weak cou-

pling”, T ext
vib ≈ TRabi “intermediate coupling”. The ratio

Tvib/TRabi is increasing when the intensity is increased
or the detuning is decreased. For a typical intensity of
≈ 150 W/cm2, in linear polarisation, the corresponding
Rabi period is ≈ 640 ps, larger than T ext

vib , so we are not
in the strong coupling case. The vibration period in the
inner well is more than one order of magnitude smaller,
so it is certainly a weak coupling case. In contrast, it is
interesting to note that this Rabi period is of the same or-
der of magnitude as the beating period T int,ext = 420 ps
defined above.

4 Time-dependent analysis of the tunneling
effect in the Cs2 0�g (6s, 6p3�2) double well

We shall describe now the results obtained by solving nu-
merically the time-dependent Schrödinger equation for the
0−g double well potential:

(T + V0−
g
)Ψ0−

g
(R, t) = i�

∂Ψ0−
g
(R, t)

∂t
(12)

with an initial condition Ψ0−
g
(R, t = 0), on a spatial

grid extending from R0 to L. The time propagation
uses a Chebychev expansion of the evolution operator
exp(−iHt/�) [17], the wavefunctions being introduced
through their Fourier grid representation [18].

4.1 Choice of the observables

We shall use several observables to analyze the dynamics:

• snapshots of the 0−g (6s, 6p3/2) wavepacket, denoted
Ψ0−

g
(R, t), at different times, in order to follow the pop-

ulation transfer from the outer to the inner well when
moving under the barrier (at R ≈ 15a0);
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constants for levels of the outer well (Bex

v ≈ 0.4 × 10−3 cm−1) and for the levels v0 − 1, v0 + 1 of the outer well with tunneling
(Be−t

v ≈ 0.8 × 10−3 cm−1). The vertical dashed lines indicate the values of t = Trev(v0 − 1)N/4 = 1 050, 2 100, 3 150, 4 200,
5 250 ps.

• snapshots of the 0−g (6s, 6p3/2) wavepacket in momen-
tum space, Ψ0−

g
(p, t), since the outer well corresponds

to small values of the momentum and the inner well
to large values;

• evolution of the population Pi(t) located in the inner
well:

Pi(t) =
∫ Ri

R0

|Ψ0−
g
(R, t)|2dR. (13)

At a given energy, Ri is the classical outer turning
point in the inner well, as showed in Figure 3. The
total population in the 0−g (6s, 6p3/2) channel is:

P0−
g

=
〈
Ψ0−

g
|Ψ0−

g

〉
=
∫ L

R0

|Ψ0−
g
(R, t)|2dR. (14)

For the one channel case discussed in this section, this
population is the total population of the problem, nor-
malized so that Ptot = P0−

g
= 1;

• expectation value of the “time-dependent rotational
constant”:

B(t) =
〈

Ψ0−
g
(R, t)

∣∣∣∣ 1
2µR2

∣∣∣∣Ψ0−
g
(R, t)

〉/〈
Ψ0−

g
|Ψ0−

g

〉
(15)

(the scalar product implies here R-integration on the
whole grid, from R0 to L). This quantity (see Fig. 4)
gives information on the location of the wavepacket
at a given time t. It is very useful as it can be com-
pared with the results of time-independent calcula-
tions reported in Table 1, yielding stationary values
Bv = 〈χv(R)| 1

2µR2 |χv(R)〉 for the rotational constants
of the vibrational levels. The quantity B(t) will have
a temporal behaviour similar to the inner well popu-
lation Pi(t) (with maxima when the population is lo-
cated at small distances), but its interpretation is eas-
ier because of the R−2 factor and the normalization in
the formula (15).
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4.2 Choice of the initial wave packet

We assume that there is a vibrational population in the
0−g (6s, 6p3/2) potential, initially localized at large dis-
tances as it is the case in the photoassociation of cold
atoms, which can reach the inner well by tunneling. To
simulate this, we consider the propagation of a Gaussian
packet centered at R0, with initial momentum p0, and
spatial width ∆R(0):

Ψ(R, 0) =
(

1
2π(∆R(0))2

)1/4

eip0(R−R0)e−( R−R0
2∆R(0) )

2

.

(16)

The parameters are chosen so that the energy Einit =
〈Ψ(R, 0)|T + V0−

g
|Ψ(R, 0)〉 is close to the “tunneling ener-

gies ” around –3 cm−1, while the distance R0 is close to
91a0 (i.e. the classical outer turning point of the potential
at this energy). The packet will describe a superposition
of vibrational states. For this precise localization R0 in the
0−g potential, and a small initial momentum p0, we choose
the width ∆R(0) of the packet (or ∆p(0) in momentum,
with ∆p(0)∆R(0) = 1/2 in atomic units) to obtain the
desired value of the initial energy. Since the initial mo-
mentum p0 is chosen very small, it is actually the width
of the packet that determines the initial energy. We show
here calculations for p0 = 0.012 au, to keep the connec-
tion with the further simulation of the photoassociation
conditions presented in Section 5, but another choice of
p0 does not change the results as long as this value re-
mains smaller than the width ∆p(0). The reason is that a
packet with an initial width ∆p(0) contains much larger
momentum components, |p| ≤ 4∆p(0) au, which have a
determinating influence because they tunnel more easily.
For instance, an initial width ∆R(0) = 5a0 in position,
corresponding to ∆p(0) = 0.1 au in momentum, gives the
initial energy Einit = −3.047 cm−1, close to the energy
of the vibrational level v0 − 1 at –2.984 cm−1. The ini-
tial distributions in position and momentum are shown
in Figure 5: at t = 0, the momentum distribution is con-
fined at values |p| ≤ 0.4 au. In contrast, the motion in
the two wells of the 0−g potential corresponds to much
larger values of momentum, namely up to 10 au in the
external well, and from 10 to 30 au in the deep inner well
(as it can be seen in the left column of the Fig. 5). We
then work with initial packets having momentum distri-
butions very narrow compared to the total momentum
domain implied in the problem, which can be considered
as a guarantee of stability of the results relative to the
choice of the initial packet. Different initial packets, all
having small initial kinetic energies, will not change the
tunneling results at a given Einit. Even if we modify the
parameters in equation (16) to probe another value of Einit

allowing tunneling, the initial wavepacket is keeping its lo-
calization at large distance and the confinement in a thin
domain of small momenta. For example, we can probe the
energy Einit = −2.906 cm−1, which is approximately the
energy of the inner well level v0, by a wavepacket with
∆R(0) = 1.5a0, which means ∆p(0) = 0.33 au.
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Fig. 5. Time evolution of the wavepackets in the 0−
g (6s, 6p3/2)

double well, between 0 and 350 ps (initial energy ≈ −3 cm−1).
Left column: position space. Right column: momentum space.

4.3 Results

We shall analyze the time-dependent results obtained from
the propagation of the wavepackets with initial energies –3
and –2.9 cm−1, allowing tunneling to the inner well. Fig-
ures 4a and 4b show that the time-dependent behaviour
of the inner well populations Pi and of the “rotational
constants” B(t) is very similar for tunneling at –3 cm−1

(initial packet with ∆p(0) = 0.1 au, centered at the en-
ergy of level (v0 − 1)) and –2.9 cm−1 (initial packet with
∆p(0) = 0.33 au, centered at the energy of level v0). The
difference is coming, as expected, from the increased “ef-
ficiency” of the tunneling at –2.9 cm−1, due to the reso-
nance with the inner well level v0, and is manifested by a
twice larger filling of the inner well, such that up to 30%
of the total population can be transferred.

Figures 5 and 6 display the wavepackets at different
instants between 0 and 1 150 ps, during propagation with
initial energy Einit = −3.047 cm−1, in the position space
(left column) and in the momentum space (right column).
We can see that between 100 and 150 ps the population of
the inner well reaches a maximum. At –2.9 cm−1 it takes a
slightly longer time to reach the maximum occupation of
the inner well (see Fig. 4a), because this maximum is in-
creased. We are tempted to use here the name “tunneling
time” for a significant quantity related to an important
transfer of population from one well to the other. In this
sense, it is possible to identify a time of 50–100 ps as being
a duration for under-barrier transit after which the inner
well can be either filled up to a maximum or emptied.
This characteristic time is visible in Figure 4 on the in-
ner well populations Pi(t), on B(t) for values B(t) > Be−t

v ,
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Fig. 6. Time evolution of the wavepackets in the 0−
g (6s, 6p3/2)

double well, between 550 and 1 150 ps. Left column: position
space. Right column: momentum space.

and on wavepackets (for example, 100–150 ps, 550–600 ps,
or 1 100–1150 ps).

A periodicity can be observed in the evolution of the
populations Pi(t) and rotational constants B(t): the in-
ner well population goes to 0 at 1 100, 2 100, 3 100, 4 200,
5 250 ps (when the wavepacket leaves the barrier region for
larger distances, see for example Figure 6 for t = 1 100 ps),
and becomes very small around 550, 1 550, 2 600, 3 650,
4 700, 5 800 ps (when the inner well is almost emptied,
but there is population in the outer well in the zone of
the barrier, as it can be seen on wavepackets in Fig. 6
for t = 550 ps). We shall check an explanation for this
pattern using an analysis of the wavepacket as a superpo-
sition of several neighbouring vibrational states, manifest-
ing periodic structures in the long-term evolution, due to
revivals and fractional revivals of the initial wavepacket,
as is shown in reference [19]. It is important to observe
that we are not in the conditions discussed in [19], since
our problem includes tunneling, and since the packet con-
tains a small number of discrete states, both leading to
strong nonclassical behaviour. We therefore do not expect
total revival of the initial packet, but a periodic return of
the wavepacket to the large distance region, leaving the
inner well empty, could account for the minima observed
in Figure 4.

It is not trivial to write a time-dependent wavefunc-
tion for a problem implying tunneling. In an analytic time-
dependent perturbation approach [20] the tunneling tran-
sition is said to be occurring due to some time-dependent
perturbing term of the Hamiltonian within the barrier. We
shall write the wavepacket Ψ0−

g
(R, t) as a function of sev-

eral eigenstates {χv(R)} of the Hamiltonian correspond-

ing to the 0−g (6s, 6p3/2) potential, including the inner well
level with a time-dependent coefficient accounting for the
fact that it is populated due to a time-dependent pertur-
bation (tunneling):

Ψ0−
g
(R, t) ≈ Ψe(R, t) + cv0(t)e

− i
�

Ev0 tχv0(R) =∑
ve

cve(t)e
− i

�
Eve tχve(R) + cv0(t)e

− i
�

Ev0 tχv0(R). (17)

At t = 0 there is no probability amplitude in the inner
well, so we have to consider cv0(0) = 0: only after tun-
neling the inner well level v0 can be manifested in the
superposition with a probability |cv0(t)|2. From t = 0 and
until the tunneling becomes active, Ψ0−

g
(R, t) is given by

the sum Ψe(R, t) coming from levels {ve} of the external
well. We denote by ve the vibrational number in the exter-
nal well, i.e. the number of nodes of the wavefunctions in
the external well. We shall consider that the sum

∑
ve

is
strongly weighted around a mean value v̄e. As the initial
energies of the packets are ≈ −3 cm−1 and –2.9 cm−1, we
can suppose that v̄e corresponds to the level designed as
v0−1. We suppose that one can expand the energies of ve

levels as a Taylor series around Ev̄e :

Eve ≈ Ev̄e +
2π�

Tcl(v̄e)
(ve − v̄e) ± 2π�

Trev(v̄e)
(ve − v̄e)2 + ...

(18)

We used the notations generally termed in the litera-
ture [19] as the classical period Tcl(ve) (which coincides
with T ext

vib (ve) defined previously) and the revival period
Trev(ve):

Tcl(ve) =
2π

ωcl(Eve)
=

2π�

Eve+1 − Eve

,

Trev(ve) = 2Tcl(ve)
∣∣∣∣�∂ωcl

∂E

∣∣∣∣
−1

(19)

with �ωcl(Eve) = �ωve+1,ve = Eve+1 − Eve , and

∂�ωcl

∂E
=

�ωve+1,ve − �ωve,ve−1

�ωcl(ve)
· (20)

The sign ± in (18) depends on the sign of the ∂ωcl/∂E.
Here the presence of v0 introduces a discontinuity, making
�ωv̄e+1,v̄e > �ωv̄e,v̄e−1, so the sign is positive for ve < v̄e

and negative if ve > v̄e.
We shall develop the analysis in two steps.
(a) The first one deals with the specific dynamics in the

external well, independent of tunneling, which periodically
brings back the population at large distances. We begin by
considering only the packet Ψe(R, t) in the external well,
without tunneling. It can be written as:

Ψe(R, t) =
∑

k

ckχk(R)e−2πi(k/Tcl+k2/Trev)t (21)

with k = ve − v̄e, and the classical and revival periods
having values corresponding to v0 − 1: Tcl = 210 ps,
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Trev = 4 200 ps. Obviously, for t = NTrev, with N
integer, Ψe(R, t) will recover its initial shape (“re-
vival”). Moreover, reference [19] is demonstrating that
for t ≈ Trev(m/n), with m/n a rational number, the
wavepacket (21) is subject to a sequence of reconstruc-
tions, with the probability density determined by the
shape of the initial packet, phenomenon called “fractional
revival”. For example, for t ≈ Trev/2:

Ψe(R, t) = Ψcl

(
R, t +

Tcl

2

)
(22)

and for t ≈ Trev/4 (and similarly for 3Trev/4):

Ψe(R, t) =
1√
2

[
e−iπ/4Ψcl(R, t) + eiπ/4Ψcl

(
R, t +

Tcl

2

)]
·

(23)

In reference [19] Ψcl(R, t) describes the packet in an early
stage of evolution, when t � Trev so that the term in
k2t/Trev can be discarded:

Ψcl(R, t) =
∑

k

ckχk(R)e−2πikt/Tcl . (24)

In our case Trev = 20Tcl, so for t ≈ Trev/4, we have
Ψcl(t) = Ψcl(0) and Ψcl(t + Tcl/2) = Ψcl(Tcl/2). The inter-
esting point is that Tcl/2 = 105 ps, which is just at the be-
ginning of the tunneling manifestation, as it can be seen on
the figures showing inner well populations and wavepack-
ets evolution (for example |Ψcl(R, Tcl/2)| can be imagined
as having a shape close to the |Ψ0−

g
(R, t = 100 ps)| in the

Fig. 5). We can then reach the conclusion that “fractional
revivals” in the evolution of the Ψe(R, t) at t ≈ NTrev/4
(N integer and Trev/4 = 1 050 ps) keep the population
approximately out of the barrier and the inner well (see
the wavepacket at 1 100 ps).

(b) Coming back to the time-evolution with tunneling,
the expression (15) of B(t) can be written taking into
account the development of the packet Ψ0−

g
and specifying

the contributions coming from the {ve} levels and the
inner well level v0:〈

Ψ0−
g
|Ψ0−

g

〉
B(t) =

〈
Ψ0−

g
(R, t)

∣∣∣∣ 1
2µR2

∣∣∣∣Ψ0−
g
(R, t)

〉

=
∑
ve

|cve(t)|2Bve + |cv0(t)|2Bv0

+
∑

(ve,v′
e),ve �=v′

e

(
cve(t)c

∗
v′

e
(t)Bv′

evee
− i

�
(Eve−Ev′

e
)t + c.c.

)

+
∑
ve

(
cve(t)c

∗
v0

(t)Bvev0e
− i

�
(Eve−Ev0)t + c.c.

)
(25)

where the c.c. in the parenthesis indicates the summation
with the complex conjugated term. In the one-potential
propagation, the total population 〈Ψ0−

g
|Ψ0−

g
〉 = 1. The

first two terms in the sum (25) contain the rotational con-
stants Bve , Bv0 , and in the last two sums appears the beat-
ing between levels of the outer well (ve, v

′
e) and between

outer well levels ve and the inner well level v0. We used
the notation Bvv′ = 〈χv(R)| 1

2µR2 |χv′(R)〉, where v �= v′

can be ve, v
′
e, v0 (obviously Bvev′

e
� Bvev0). The time-

dependence in (25) looks quite complicated, but we can
suppose that tunneling implies only the v0−1, v0 and v0+1
levels, and that the last summation contains only contri-
butions from v0−1 and v0+1 with a “beating time” T int,ext

between the two wells as shown by the formula (5). We
can write a simplified formula supposing the coefficients cv

as being real and using the expansion (18). Equation (25)
becomes:

B(t) =
∑
ve

|cve(t)|2Bve + |cv0(t)|2Bv0

+
∑

(ve �=v′
e)

2cve(t)cv′
e
(t)Bv′

eve

× Re

(
e
−i2π

�
ve−v′

e
Tcl(v̄e) +

(ve−v̄e)2±(v′
e−v̄e)2

Trev(v̄e)

�
t

)

+
∑

v=v0−1,v0+1

2cv(t)cv0(t)Bv0vRe
(
ei2π t

T int,ext

)
. (26)

The times appearing in (26) have the values: Tcl(v̄e) =
Tvib(v̄e) = 210 ps, Trev(v̄e) = 4 200 ps, and T int,ext =
420 ps. The sum

∑
(ve �=v′

e) is mainly directed by the evo-
lution of Ψe(R, t) described previously, and

∑
v=v0−1,v0+1

introduces the beating between the two wells with a period
T int,ext and contributes with large values Bv0v at B(t).

The minima of B(t) and Pi(t) appear when the pop-
ulation in the inner well approaches 0, which happens for
a partial revival or fractional revival of the wavepacket
at large distances. As we showed previously, for t ≈
Trev(v̄)N/4, so for t ≈ 1 050, 2 100, 3 150, 4 200, 5 250,
6 300, ... ps there is a “partial revival” of the packet at
large distances, in the sense that it leaves the inner well
for some period. We see that these values correspond ef-
fectively to the minima in Pi(t) and B(t).

On the other hand, for t = Trev(v̄)No/8, with No odd
integer, that means t = 525, 1 575, 2 625, 3 675, 4 725,
5 775 ps, etc., Re(ei2π t

T int,ext ) = Re(ei5π/2) = 0, because
Trev = 10T int,ext. So, the last term in the expression (26)
implying beating between v0−1 or v0+1 and v0 becomes 0.
In the Figure 4 these values of time correspond to partial
emptying of the inner well and minima in Pi(t) and B(t).

What can we learn from this analysis? We simply ob-
serve here the movement of a packet composed of a super-
position of vibrational states formed in the external well,
at an energy allowing tunneling to the inner well. The pos-
sibility of tunneling advanced by the stationary analysis is
then confirmed, and moreover we identify an effect which
can be called “efficiency” of tunneling. At –3 cm−1, a max-
imum of 15% of the 0−g population is transferred to the
inner well and Pi ≈ 7.5%P0−

g
during 6 000 ps. As expected,

the efficiency is increased at –2.9 cm−1, the maximum be-
ing of 30%, and the population in the inner well being
doubled (Pi ≈ 15%P0−

g
during 6 000 ps). We can distin-

guish two regimes in the movement of the wavepackets:
one of a strong separation of the packet in two parts, re-
spectively located in the inner well and in the outer well
at large distances (R > 50a0), corresponding to maxima
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of Pi(t) and B(t) (see for example the wavepackets for
t = 150, 200 or 850 ps); in the other regime, the packet oc-
cupies the external well in a range of distances between 15
and 60a0 which encourage under-barrier transit between
the two wells (for example, the packet at t = 350 ps). This
second regime produces in Fig. 4b) values of B(t) between
Bex

v and Be−t
v (the rotational constant for v0 − 1, v0 + 1).

The time-evolution combines the specific dynamics of a
superposition of levels in the external well implying par-
tial “revival” at large distances, and the beating between
the two wells with a period T int,ext ≈ 420 ps. The pres-
ence of the inner well level and the tunneling emphasizes
the dephasing between terms with different energies and
introduces an “irreversibility” in the evolution: Figures 4a
and 4b show that after Trev = 4 200 ps, the pattern starts
to be modified. We have also identified a time elapsed un-
til a maximal filling up or emptying of the inner well (from
0 to Pmax

i , and from Be−t
v to Bmax

v (t)) which is between
50 and 100 ps.

5 Photoassociation and tunneling
two channels: a3Σ+

u −→ 0�g (6s, 6p3�2)

Our main purpose is a time-dependent analysis of the pho-
toassociation when a cw laser is turned on at resonance
with the energy region where tunneling occurs. As dis-
cussed in a previous paper [8], the choice of the initial
state for a time-dependent propagation simulating pho-
toassociation can be numerically problematic. We have
performed photoassociation simulations using a Gaussian
packet as initial state in the a3Σ+

u channel, which is a valid
representation for sufficiently high temperatures [8]. This
means that ΨΣ(R, 0) is defined as in formula (16), and
Ψ0−

g
(R, 0) = 0. The initial Gaussian ΨΣ(R, 0) is chosen as

being centered at the excitation point Re = R0 and having
a very small initial momentum p0 = 0.012 au, correspond-
ing to a Maxwellian velocity distribution of cesium atoms
at a temperature T = 200 µK. In order to confine the
calculations on a reasonable spatial grid size, the width of
the Gaussian is established at ∆R(0) = 7.5a0 in position
or ∆p(0) = 0.066 au in momentum, which corresponds to
a temperature of 6 mK. Comparing with the real condi-
tions of the photoassociation experiments, this localized
representation of the initial state encourages a more rapid
dynamics in the ground state a3Σ+

u , induced by the large
momentum components of the initial packet. An interest-
ing question is to which extent the ground state dynamics
is influencing the excited state dynamics and vice versa.

The two channels being continuously coupled by
light, and the coupling active only around the excita-
tion point Re, at a given time t the transfer between the
ground and excited states is conditioned by the amount
of population localized around this precise distance. Then
the photoassociation dynamics of the two coupled chan-
nels varies a lot with the detuning, not only because of
the change in the Franck-Condon factors (as it is well-
known, the photoassociation efficiency increases by de-
creasing the detuning), but also because the distances of

vibration are changed. Photoassociation into different ex-
citation states is “an optical method for altering the in-
teractions between ground-state atoms” [21]: even if not
relative to the dynamics, this point was stressed in the last
years due to the increased interest for a control of interac-
tions in the ground state, important for the achievement
of Bose-Einstein condensates. From the point of view of
our present study, it is interesting to remark that the vi-
brational levels of 0−g state lying at about –3 cm−1, close
to the energy of tunneling, represent very different final
states for photoassociation, susceptible to induce differ-
ent dynamics in the ground triplet state, even if they are
neighbouring vibrational levels. We shall probe this by
modeling of the photoassociation in the 0−g double well for
different detunings around 3 cm−1, corresponding to exci-
tation of v0 −1 (level of the outer well with tunneling), v0

(inner well level with tunneling), and v0+2 (outer well) vi-
brational levels. The excitation distances Re for these lev-
els are: 91.2a0, 92.3a0, and 94.3a0. The initial wavepackets
on the triplet state being centered in R0 = Re with the
same initial momentum and width, the initial state is al-
most the same in all three cases. The coupling �Ω due
to cw laser field is also the same: results will be shown
for �Ω = 0.026 cm−1, corresponding to I ≈ 150 W/cm2

in linear polarisation (TRabi = 640 ps). To see the differ-
ences for tunneling, we also consider a twice larger cou-
pling 2�Ω (I ≈ 600 W/cm2 in linear polarisation, and
TRabi = 320 ps).

It can be expected that the tunneling will take place
differently from the propagation in the 0−g alone, because
now the packet in the double well proceeds from the pho-
toassociation of two cold atoms with a cw-laser, meaning
that not only it has very small kinetic energy, but a pre-
cise vibrational level of the 0−g double well is excited, and
not a superposition of vibrational states.

The time-dependent Schrödinger equation (8) for the
two coupled channels is solved numerically on a grid of
length L (extending from 8.3a0 to 319a0, and having
8 192 points). A second grid, much smaller (2 048 points),
continuing this main grid, is used to absorb the popula-
tion which goes out from the interaction zone during the
time-evolution. In fact, the second grid is useful only for
the a3Σ+

u channel, because a part of the initial Gaussian
wavepacket spreads to large distances. Generally we tried
to use a grid sufficiently large to keep total population con-
stant on the main grid (Ptot = P0−

g
+ P3Σ+

u
= 1) during a

period as long as possible.

5.1 Resonant excitation of the level v0 − 1
of the outer well

We consider now the photoassociation of two cold atoms
by a cw-laser, tuned at �∆L = 3 cm−1 relative to the
(6s + 6p3/2) asymptote, on resonance with the level v0 −
1 lying at −2.984 cm−1 in the outer well. The coupling
�Ω = 0.026 cm−1 (TRabi = 640 ps) corresponds at I ≈
150 W/cm2 in linear polarisation. The initial Gaussian
wavepacket in the 3Σ+

u state is centered at R0 ≈ 91a0

and has the initial energy −2.998 cm−1.
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Fig. 7. Evolution of wavepackets on a3Σ+
u (left column) and

0−
g (6s, 6p3/2) (right column) channels, during modelized pho-

toassociation at detuning �∆ = 3 cm−1 (resonant excitation of
the level v0 − 1 of 0−

g ). The corresponding potentials are also
shown.
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(a) Time variation of the population in the 0−
g (6s, 6p3/2) poten-

tial (P
0−g , represented with dashed line) and in the inner well

(Pi, full line). The total population Ptot = P3Σ+
u

+ P
0−g = 1.

(b) Time variation of the B(t) – “rotational constant of the
wavepacket”.

The important difference with the previous case is that
only one vibrational level of the 0−g (6s, 6p3/2) outer well is
excited, namely v0−1, which tunnels to the inner well, as it
can be seen in Figure 7 displaying the wavepackets evolu-
tion, and in Figure 8a showing the total population excited
in the 0−g channel, P0−

g
(t), and the amount Pi(t) which oc-

cupies the inner well. P0−
g
(t) increases in the first 850 ps,

after which it begins to diminish and stabilizes at 8% of
the total population. Trying to explain this behaviour, we
find that the oscillation of about 1 600 ps which can be

observed in the beginning is related to the movement of
the a3Σ+

u packet in the ground state, displayed in the left
column of the Figure 7. The transfer of population from
ground to excited state is taking place around 91a0, at the
crossing point of the dressed potential curves which coin-
cides here with the center of the initial packet on ground
state. This transfer is stopped and inversed around 850 ps
by the diminution of the population in the ground state
around Re. As we see in Figure 7, at t = 850 ps both pack-
ets have the same height at Re ≈ 91a0 and the population
is not longer transferred to 0−g (in strong field the transfer
continues until the creation of a hole in the initial packet,
which causes the inversion of population; it is not the case
here, we are in a “weak field regime”). At 1 500 ps the
a3Σ+

u packet reaches again a maximum around Re, and
the population increases on the excited channel, but after
2 000 ps a regime of saturation is installed and the excited
state population is stabilized around P0−

g
= 0.08Ptot. As

a result, in the first 1 600 ps, the maximum population
transferred to the inner well is 5% (it is remarkable that
this represents Pi = 0.16P0−

g
, the same percentage as in

the one-channel propagation), but after 1 600 ps it stabi-
lizes to very low value. Nevertheless, oscillations with a
period of about 450 ps can be distinguished in the be-
haviour of Pi(t) during all the evolution. Indeed, as it can
be seen in Figure 8b, the “rotational constant” B(t) has
a remarkable simple behaviour, consisting of oscillations
with a period of about 450 ps, close to the beating time
between the two wells T int,ext = Tv0−1,v0 = 420 ps. This
simple oscillation is accounted for by formula (26), for
the case in which we have only the levels v0 − 1 and v0.
The domain of variation of B(t) is also changed: most of
the time B(t) is much larger than rotational constants
Be−t

v ≈ 0.8 × 10−3 cm−1 of levels v0 − 1, v0 + 1, but far
from the value B0

v = 4.5 × 10−3 cm−1 of the inner well
level v0. The 0−g wavepacket is typically extending both in
the inner and in the outer well.

5.2 Excitation of the level v0 of the inner well:
off-resonance excitation

Now we assume that a cw-laser with the same intensity is
tuned (�∆L = 2.9 cm−1) off-resonance relative to the lev-
els of the outer well, so that the photoassociation efficiency
is expected to be low, but on-resonance with the level v0

at −2.9 cm−1 in the inner well. In fact the vibrational level
v0 of the inner well can be viewed as tunneling from the
inner to the outer well, and having an nonnegligible part
of its wavefunction in the external well, which makes pos-
sible its excitation from large distances. The initial state is
represented by a wavepacket in the a3Σ+

u electronic state
having the same characteristics as before, but centered at
≈ 92a0. The initial energy is −2.898 cm−1 relative to the
(6s + 6p3/2) asymptote.

As it is shown in Figure 9a, the efficiency of the pho-
toassociation process is poor: less than 10% of the pop-
ulation is transferred to the excited 0−g state. Neverthe-
less, the transfer to the inner well is much more efficient
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g wavepacket.

than in the previous case. The population Pi in the inner
well oscillates between 5% of the total population and 0
(during 6 000 ps, ≈ 2.5% of the total population is in the
inner well). The oscillatory behaviour of the P0−

g
(t) and

Pi(t) with a period of about 1 400 ps suggests a “strong
field effect”, in the sense that the inner well population is
more sensitive at the laser intensity than before, when the
external level v0 − 1 was excited. Indeed, we did calcula-
tions for a coupling which is twofold, 2�Ω (the intensity is
I ≈ 600 W/cm2 in linear polarisation), and the results are
displayed in Figure 11b. It is obvious that the efficiency of
the tunneling is strongly increased by increasing the laser
intensity. This is not true for the resonant excitation of
v0 − 1: in Figure 11a it can be observed that the popula-
tion transferred in the 0−g excited state markedly depends
upon the laser intensity, but the tunneling efficiency is not
really increased (as we see for an intensity of 600 W/cm2,
after 2 000 ps). Figure 11b makes clear that the “slow oscil-
lations” of P0−

g
(t) and Pi(t) keep approximately the same

period, between 1 200 and 1 400 ps, even for a double in-
tensity of the field. This oscillant behaviour illustrate the
exchange of population with the ground triplet state and
it is certainly strongly influenced by the movement of the
a3Σ+

u packet. Besides these large oscillations, the “beating
oscillations” of about 400−450 ps due to tunneling can be
observed not only in the inner well population Pi(t), but
also on the whole 0−g population P0−

g
(t), at both intensi-

ties. This means that tunneling influences the population
transfer at large distances during photoassociation, as it
determines the vibrational movement in the double well.

The 0−g packet excited in the photoassociation is typ-
ically localized in the inner well (see Fig. 10), as it is
shown by B(t) (Fig. 9b), whose values are much bigger
than those of rotational constants for v0 − 1, v0 + 1. The
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value B0
v = 4.5 × 10−3 cm−1 of the inner well level v0 is

reached during the time-evolution.
These results show that the inner well can be popu-

lated either by “direct excitation” of the inner well level v0,
or by exciting one of the v0 − 1, v0 + 1 neighbouring lev-
els belonging to the outer well, but manifesting also tun-
neling. The population of the inner well depends on the
photoassociation efficiency, which is bad for a laser tuned
off-resonance with an external well level. In the compe-
tition between photoassociation efficiency and tunneling
efficiency, we find that tuning the laser at resonance with
a level in the external well, as close as possible to the tun-
neling energy, yields a large photoassociation probability,
and a small tunneling probability; tuning the laser at res-
onance with the vibrational level in the inner well yields a
small photoassociation probability, but a large tunneling
probability. The two choices give equivalent results dur-
ing the first 1 000 ps, but the second choice is much more
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g : v0−1 (−3 cm−1),
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the ground state is almost the same (after 5 000 ps, the a3Σ+

u
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efficient on a larger timescale and also very sensitive at
the laser intensity.

Before ending this section, we find interesting to il-
lustrate the remarks made in the beginning about how
different can be the dynamics of the system reaching close
photoassociation resonances. In Figure 12 we show results
obtained for v0 − 1, v0 (outer and inner well levels with
tunneling) and v0 + 2 (which is a “pure” outer well level).
The coupling is the same, and the initial ground state can
also be considered the same, as the excited states are re-
ally very close one to the other. It is the quality of the final
states that induces different dynamics of the system and
consequently changes the behaviour in the ground triplet
state. In all these three cases there is a first oscillation of
the populations having almost the same period, around
1 600 ps, which can be explained by the movement of the
packet in the ground state. Subsequently, their evolutions
become completely different. The marked oscillatory be-
haviour in the v0 + 2 excitation indicates that the “same
field” is felt as a stronger one with the decrease of the
detuning.

6 Conclusion

The paper contains a time-dependent analysis of the
tunneling effect observed in the cesium photoassociation
experiments when vibrational levels of the 0−g (6s, 6p3/2)
double well potential are populated at large interatomic
distances, after absorption of a photon by a pair of cold
cesium atoms. The interest of the reaction lies in the pro-
duction of ultracold molecules in low vibrational levels.
Previous works [7,6] have shown that the observed spec-
trum contains the evidence for tunneling to the inner well
at detunings of −2.14 (G1) and −6.15 cm−1 (G2), and that
the experimental results could be reproduced by station-
ary calculations taking into account the coupling at small
distances between 0−g (6s, 6p3/2) and 0−g (6s, 5d), and using

potentials slightly modified from ab initio calculations of
Meyer’s group at short distances, matched to asymptotic
calculations of Marinescu and Dalgarno. In the present
work a simplified model has been considered where the
coupling with the 0−g (6s, 5d) channel in the inner region
is not considered, which implies that we study only one
(G1) of the two structures, which is due to the presence
in the 0−g (6s, 6p3/2) potential of a inner well level v0 at
−2.9 cm−1, for which tunneling is important. In fact the
tunneling occurs not only for level v0 which has a wave-
function mainly located in the inner well, but also for the
neighbouring levels (v0 − 1) and (v0 + 1), mainly located
in the outer well.

We first have studied the tunneling effect alone, by con-
sidering the evolution of a wavepacket with energy close to
v0, and located in the external well around the outer turn-
ing point at this energy. The time evolution of a packet
made by a superposition of vibrational levels including
(v0−1, v0, v0+1) shows beating between the two wells due
to tunneling and a partial “revival” phenomenon bringing
periodically the population at large distances. We identify
characteristic times corresponding to vibration in the ex-
ternal well (200−250 ps), beating between the two wells
(420 ps), and fractional revivals at t = NTrev(v0 − 1)/4,
N integer, leading to emptying of the inner well at regu-
lar intervals. The population of the inner well can reach a
maximum of 30% for a wavepacket centered at the energy
of the level v0.

In a second part we simulate the photoassociation reac-
tion a3Σ+

u → 0−g (6s, 6p3/2), by considering that a linearly
polarised cw-laser with intensity of about 150 W/cm2 is
turned on at time t = 0, coupling the two electronic states
at a detuning allowing the observation of tunneling. This
laser coupling can be viewed as a Rabi cycling with a
period of 640 ps, which determines the exchange of popu-
lation between the continuum of the a3Σ+

u electronic state
and a vibrational level of the 0−g (6s, 6p3/2). For the levels
v0 − 1, v0 +1 of the external well with vibrational periods
of 200−250 ps, this coupling can be qualified as a weak
one, the packets having time enough for several vibration
periods during a “Rabi period”. We simulated photoasso-
ciation at different detunings, in order to populate either
a level (v0−1) or (v0+1) of the external well (resonant ex-
citation), or the v0 level of the inner well (“off-resonance”
excitation). The wavefunction of this latter level is expo-
nentially decreasing in the outer well. In the first case the
photoassociation reaction is efficient, transferring up to
30% of the population in the excited state, but the tunnel-
ing probability is small. In the second case, the tunneling
probability is large, so that despite the poor efficiency of
the photoassociation process, transferring less than 10%
of the initial population in the excited state, up to 5% of
the population can still be transferred into the inner well,
with a strong probability of forming ultracold molecules
in low vibrational levels by spontaneous emission. For the
excitation “off-resonance” of the v0 level, the results de-
pend markedly of the laser intensity, which could be used
to control the inner well population. It is also remark-
able that in the v0 excitation the exchange of population
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between the two channels (P0−
g
(t) and P3Σ+

u
(t)) are mod-

ulated in time by the beating period of 420 ps implying
tunneling between the two wells.

Our observation that the inner well is populated by
the direct excitation of a level v0 of the inner well, with
evanescent wave function in the region of the outer well,
helps to a better understanding of the experimental spec-
trum discussed in reference [6]. The photoassociation pro-
cess is not very efficient in this case, due to a poor over-
lap with the wavefunction describing two colliding ground
state atoms. Previous work did not explain why only cer-
tain rotational lines of the structures G1, G2 (assigned to
the coupled inner wells 0−g (6s, 6p3/2) and 0−g (6s, 5d)) are
“giant”. From the spectrum published in reference [6] it
can be seen that the intense lines are observed for J val-
ues where the tunneling level in the inner well coincides
with a vext level in the outer well. So the giant lines of the
experimental spectrum, manifesting an important occupa-
tion of the inner well and formation of cold molecules in
low vibrational levels, are obtained when both conditions
of photoassociation efficiency and tunneling efficiency are
fulfilled. This will be discussed in more details in a forth-
coming paper, where the calculations are including cou-
pling with the 0−g (6s, 5d) channel and J-dependence, as
well as spontaneous emission to the ground triplet state.
Such calculations show that the present simplified model
is accounting for all the physical effects. They will give
quantitative predictions for the formation rate of ultra-
cold molecules in the a3Σ+

u lower triplet state.
In the beginning of this work, we addressed a question

about the possibility of observing a “tunneling time” in
our results. It is no doubt that in the present problem the
barrier is crossed “very rapidly” by fast components of the
wavepacket, but we are more interested in the evolution of
the inner well population, depending on the dynamics of
the wavepacket that is moving in the external well. We find
that when we study the motion of a wavepacket made by
a superposition of states, a “tunneling time” of 50−100 ps
leads to a maximal occupation of the inner well. But in the
photoassociation experiment, when a 0−g (6s, 6p3/2) level is
excited by a cw photoassociation laser, the relevant time
is the beating time of 420 ps between the two wells, deter-
mined by the energy splitting between v0 and v0 − 1 (or
v0 + 1).

Future work should include photoassociation with a
pulsed laser, where several levels are populated simulta-
neously, and propose a way of substantially increasing the
formation rate of ultracold molecules in low vibrational
levels of the ground triplet state, i.e. “vibrationally cold
molecules”. Pump-probe experiments should be particu-
larly interesting in the present problem.

The authors are grateful to M. Aymar, E. Luc-Koenig, O.
Dulieu and R. Kosloff for critical reading of the manuscript
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Romania.
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